Mora: Enabling generalist video generation via a multi-agent framework
Zhengqing Yuan*, Yixin Liu*, Weixiang Sun*, and 8 more authors
arXiv preprint arXiv:2403.13248, 2024
Text-to-video generation has made significant strides, but replicating the capabilities of advanced systems like OpenAI’s Sora remains challenging due to their closed-source nature. Existing open-source methods struggle to achieve comparable performance, often hindered by ineffective agent collaboration and inadequate training data quality. In this paper, we introduce Mora, a novel multi-agent framework that leverages existing open-source modules to replicate Sora’s functionalities. We address these fundamental limitations by proposing three key techniques: (1) multi-agent fine-tuning with a self-modulation factor to enhance inter-agent coordination, (2) a data-free training strategy that uses large models to synthesize training data, and (3) a human-in-the-loop mechanism combined with multimodal large language models for data filtering to ensure high-quality training datasets. Our comprehensive experiments on six video generation tasks demonstrate that Mora achieves performance comparable to Sora on VBench, outperforming existing open-source methods across various tasks. Specifically, in the text-to-video generation task, Mora achieved a Video Quality score of 0.800, surpassing Sora’s 0.797 and outperforming all other baseline models across six key metrics. Additionally, in the image-to-video generation task, Mora achieved a perfect Dynamic Degree score of 1.00, demonstrating exceptional capability in enhancing motion realism and achieving higher Imaging Quality than Sora. These results highlight the potential of collaborative multi-agent systems and human-in-the-loop mechanisms in advancing text-to-video generation. More visualization results of our work are available at https://mora-2025.github.io/.